
 

 

ZAMBIA INFORMATION COMMUNICATION TECHNOLOGY (ICT) 
JOURNAL 

Volume 7 (Issue 1) (2023) Pages 52-56 

 

Zambia (ICT) Journal, Volume 7 (Issue 1)  © (2023)  52 
 

A Supervised Machine Learning Ransomware Host-Based Detection 

Framework 

Yotam Mkandawirea and Aaron Zimbab 

a. Department of Computer Science & IT Mulungushi University, Kabwe, Zambia, email: thby2022@gmail.com 

b. Department of Computer Science, ZCAS University, Lusaka Zambia, email: aaron.zimba@zcasu.edu.zm

  

 

 
 

 

Abstract— today, the term ransomware is frequently used 

in cybercrime headlines, its consequences have been on the rise 

leaving a trail of terrible losses in its wake. Both people and 

businesses have been victimized by ransomware, costing the 

victims millions of dollars in ransom payments. In addition, 

victims who were unable to pay the ransom or decrypt the data 

experienced data losses. This study uses dynamic malware 

analysis artifacts and supervised machine learning to detect 

ransomware at the host level. It takes on a thorough 

examination of the operational specifics of ransomware and 

suggests a supervised machine learning approach to detection 

using various ransomware features derived from a dynamic 

malware analysis. According to the findings, a Logistic 

Regression algorithm model with a 97.7% accuracy score 

offers a 99% success rate in ransomware detection. This 

demonstrates how well machine learning and dynamic 

malware analysis work together to detect ransomware activity 

at the host level. Systems security administrators can mitigate 

security risks by using this method. 

Keywords— Ransomware, CryptoLocker, Crypto API, IDS, 

Machine Learning 

I. INTRODUCTION 

Generally, rransomware is categorized into two types: 
locker-ransomware and crypto ransomware [19]. Locker 
ransomware essentially includes corrupting or disrupting 
basic computer functionality while protecting the data 
integrity and safety of the victim; it typically locks 
computing devices or user interfaces and requires a ransom 
payment to unlock them. Crypto-ransomware on the other 
hand, encrypts the files of victims on a computer or network 
and demands a ransom to decode them. It is worth noting 
that crypto-ransomware assaults do not encode the entire 
hard disk, but rather look for imperative file extensions that 
have the greatest impact on victims  [2]. 

From its first introduction, ransomware has grown to 
become one of the biggest threats to both individuals and 
enterprises globally. Over the years, the size of the ransom 
demanded by attackers has grown exponentially, a 
ransomware annual report by [16] shows that the typical cost 
to rectify the consequences of the most recent ransomware 
attacks was US$1.85 million (factoring in people and down 
time, network and device cost, opportunity cost and paid 

ransom etc.), this is more than double the US$761,106 cost 
described in the year 2020 report. 

Not only has the frequency of ransomware attacks 
increased but there has been exponential growth with regards 
to ransomware attack tactics. Modern ransomware attack 
techniques have proven to be resilient due to their encryption 
and recovery-prevention techniques. The newer variants of 
ransomware use hybrid cryptosystems. Using RSA and AES, 
the malware creates symmetric and sub-symmetric host keys, 
data is then encrypted using AES keys, and the sub-RSA key 
is encrypted using the entrenched key before being used to 
encrypt the AES keys. [4]. Furthermore, newer ransomware 
strains have evolved to the extent of including recovery-
prevention tactics such as the erasing of volume shadow 
copies or overwriting original target files after encryption 
[20]. Most mitigation frameworks have become obsolete as a 
result of these novel strategies, which have sparked research 
attention. 

When faced with fresh ransomware versions that use 
newer and more sophisticated attack strategies, mitigation 
techniques may fall short due to the continually changing 
attack techniques. Newer ransomware variants employ 
stealth and evasion strategies which make detection at 
network level extremely difficult, host level detection has a 
competitive advantage of being able to view the entire set of 
actions that a malware program performs, allowing harmful 
code to be identified before it is run at all [2]. 

This study investigates the detection of ransomware 
assaults in a generic host environment by utilizing dynamic 
features of malware. It deals with a thorough review of the 
operating elements of ransomware and suggests a machine 
learning technique in collaboration with several ransomware 
characteristics generated from the dynamic malware analysis 
for detection. Microsoft Windows operating system is used 
for the host environment due to its global wide use [4]. 

The study is structured as follows: Section II covers 
relevant publications, and Section III introduces the approach 
and suggested detection framework. The findings and 
analysis in Section IV, as well as the conclusion in Section V 
while limitations and recommendations come in Section VI. 



Mkandiwire and Zimba/ Zambia (ICT) Journal, Volume 7 (Issue 1) © (2023 
 

Zambia (ICT) Journal, Volume 7 (Issue 1)  © (2023)  53 
 

II. RELATED WORKS 

Host level detection has received a lot of interest in the 
security scene, despite the fact that network level detection 
has garnered more study. While some research efforts have 
focused on implementing dynamic malware analysis, most  
have centered on using static malware analysis. [9]. A study 
by Kharaz et al. [10] gave rise to "UNVEIL".  The study 
examined 1,359 malware samples from 15 different 
ransomware families. First, it creates a sandbox-type analysis 
environment with bait files for a ransomware to targets. API 
hooking is then used to observe system activity in this 
context. The ransomware is introduced into the environment 
and checked for three things: a large rise in the randomness 
(entropy) between the read and write data buffers, the 
creation of new files with a high entropy signature, and 
the number of I/O requests related to writing or deleting the 
bait files. 

Locky and CryptoWall ransomwares employ Microsoft 
CryptoAPI or OpenSSL, according to Takanari [17]. The 
authors decided to monitor API calls related to encryption as 
a means of attack detection as a result of their discovery. 
With this method, file encryption attempts by Encryptor are 
noticed as they attempt to begin, and prevention is performed 
by the operating system stopping the API execution as soon 
as detection takes place. The detection application injects a 
DLL file into each software process in order to track API 
calls made by the target software. 

Kim [11] used document classification techniques to 
assess the performance of a machine learning strategy in 
malware detection. They used batch script files to extract 
Windows system calls as a feature and used 8-grams, 9-
grams, and 10-grams to extract feature information. Weights 
were assigned using TF-IDF and vectors were created using 
Euclidean normalization. Finally, they ran tests using SVM7 
and SGD8 which came out with a 96% accuracy. 

In 2018, Takeuchi, Sakai and Fukumoto [18] proposed a 
ransomware detection scheme for Microsoft computers based 
on support vector machines. Using Cuckoo Sandbox, they 
dynamically retrieved characteristics from ransomware API 
invocation sequences. When tested, the framework generated 
2-gram count vectors that had a detection accuracy of 97%. 

Table I summarizes the contrast between our prosed 
model and existing frameworks.  

TABLE I.  COMPARISON WITH OTHER WORKS 

Framework API 

Monitoring 

Registry 

Key 

Monitoring 

Directory 

Monitoring 

File rwx 

Monitoring 

Web 

Application 

[10]      

[18]      

[8]      

[17]      

[11]      

Proposed 

model 

     

 

As can be seen in Table I above, our detection framework 
has several advantages in comparison to some existing 
frameworks. Though API monitoring is the core of the 
framework, our approach factors in registry key monitoring, 
directory monitoring, file permission monitoring and a web-
based user interface. 

 

III. PROPOSED METHOD 

Based on the sequence of system operations, such as API 

calls, registry key operations, directory operations and file 

‘read-write-execute’ operations our proposed approach 

employs machine learning to identify ransomware files from 

innocuous ones. A significant portion of machine learning 

research is focused on supervised learning, the availability 

of annotated training data is what distinguishes supervised 

learning from unsupervised learning. The term suggests the 

existence of a "supervisor" who gives the learning system 

instructions for the labels to attach to training samples. In 

classification issues, these labels are often class labels. From 

these training data, supervised learning algorithms create 

models that may be used to categorize more unlabeled data. 

In supervised learning, a mapping between a set of input 

variables X and an output variable Y is learned, and this 

mapping is then used to forecast the results for hypothetical 

data. 

 

 
Figure 1: Classical supervised learning [8] 

 

As shown in figure 1, the training data (also referred to 

as the dataset), is split in two i.e., the X-set and Y-set. The 

target set, which might be binary (0 and 1) or many (multi 

classification), is represented by the 𝑌 set, whereas the 𝑋 set 

is a collection of feature values. The key goal is to identify 

the function "𝑓 ̂" that, by reducing the classification error, 

will more accurately generalize equation 1 and ensure that 

equation 2 is correct. 

𝑓(𝑋) ⇒ 𝑌  (1) 
𝑓 (𝑥) = 𝑦̂    (2) 

 



Mkandiwire and Zimba/ Zambia (ICT) Journal, Volume 7 (Issue 1) © (2023 
 

Zambia (ICT) Journal, Volume 7 (Issue 1)  © (2023)  54 
 

During the learning process, six classification algorithms 

were employed to train the model and the best performing 

algorithm was chosen as the classifier for our model [1]. 

The six classification algorithms used are Decision Tree 

Classifier, Random Forest Classifier, Gradient Boosting 

Classifier, Ada Boost Classifier, Gaussian Naïve Bayes, and 

Logistic Regression. The performance metric used is 

accuracy, though metrics such as precision and recall are 

also considered. 

 

 (3) 

    (4) 

 

 

  (5) 

 

 

Dynamic analysis is achieved via virtualization-based 

sandbox techniques [13]. We can identify whether a 

program is harmful or not by looking at the altered operating 

system structure that results from running software. For our 

proposed framework we use Cuckoo [16], a malware 

analysis tool that offers a thorough behavior report on a 

Windows executable file. The sandbox-based system's 

present stage of development is sufficient for reporting input 

executable files' behavioral activities in the form of 

behavioral reports. Following the extraction of the X-set 

characteristics from the report, the model makes a 

prediction. 

 

________________________________________________ 

Algorithm 1: Feature selection and machine learning model 

Input: X - Standard dataset 
Output: P - Feature list, Q - Classifier 
 

1. Read X with no labels 

2. 𝑓et(X) ⇒ P 

3. Save P 

4. algorithms = {𝑓dt(), 𝑓rf(), 𝑓gb(), 𝑓ad(), 𝑓gn_b(), 𝑓lg()} 

5. for i in algorithms: 
6.        clf = algorithms[i] 
7.       clf.fit(P)⇒ Q 
8.      Save accuracy score 
9. Algorithm with highest accuracy score is saved. 

10. End 

 

 

________________________________________________ 

Algorithm 2: Supervised learning ransomware detection 

Input: X - Windows executable file, P – Feature, Q – 
Classifier, C – Cuckoo sandbox instance, t - detection 

program 

Output: Z – Dynamic analysis report, k – prepped sample, Y 

– Prediction,  

 

1. Initialize C 

2. C (X) ⇒ Z 

3. t. P (Z) ⇒ k 

4. t. Q (k) ⇒ Y 

5. End 

 

IV. EXPERIMENT RESULTS AND DISCUSSION 

A. Dataset Description 

 A dataset created because of the work of [15] is used as 

the study case throughout the experimental session. The 

collection includes 942 benign applications and 582 

functional instances of ransomware from 11 distinct 

families. The dataset features include registry keys 

operations, API statistics, strings, file extensions, files 

operations, directory operations and dropped files 

extensions. This dataset was chosen because it allows for the 

collection of API information and registry key 

manipulations, both of which are common in ransomware 

activity. 

B. B. Feature selection  

The feature selection process employs Extremely 

Randomized Trees Classifier, sometimes referred to as Extra 

Trees Classifier. The Extra Tree classifiers integrates the 

results of numerous de-correlated decision trees that have 

been gathered in a "forest" as part of an ensemble learning 

strategy. To accomplish feature selection utilizing the forest 

structure, the normalized total decrease in the mathematical 

criteria (Information Gain is our preferred criterion) is 

computed for each feature throughout the forest's building 

[3]. Information gain is a term used to describe how much 

knowledge a characteristic imparts about a class. 

 

Gain=Eparent−Echildren   (6) 

 

Where ‘E’ in equation 6 above represents the entropy. 

Entropy is a metric used in information theory to gauge how 

impure or uncertain a set of observations is. 

 

 (7) 

 

Equation 7 above is the formula to find the entropy of 

data where ‘’ is the number of classes and ‘’ is the 

likelihood of picking a class example ‘’ at random. The 

feature selection process also serves the purpose of 

rectifying the curse of dimensionality (overfitting) [5]. 

C. Experiment setup  

80% of the data in the optimized dataset will be utilized 

for training, while the remaining 20% will be used for 

testing. Every sample has the same opportunity to take part 

in the trials as a training or testing sample. The same 

performance indicators (accuracy, precision, and recall) are 

considered during each cycle (training and testing). 

 



Mkandiwire and Zimba/ Zambia (ICT) Journal, Volume 7 (Issue 1) © (2023 
 

Zambia (ICT) Journal, Volume 7 (Issue 1)  © (2023)  55 
 

 
Figure 2: Dataset split to training and testing set. 

 

 

 
Figure 3: Find best performing algorithm. 

 

The simulation program is written in python 

programming language, the machine learning model was 

trained and tested in Jupyter notebook, PyCharm community 

2021.3.3 was used as the IDE where the Streamlit server 

was launched to host the web application on a computer 

with an Intel core i5 CPU, 2.5 GHz with 12gb RAM and 

running windows 10 64bit.   

 

D. Experiment Results and Discussion 

The experiment's initial phase focuses on improving the 

dataset and developing the machine learning model. The 

complexity of the execution (training/testing) is recorded in 

seconds and the accuracy in percentage. Metrics such as 

precision, recall, f1-score, ROC, and AUC are determined.  

 

 
Figure 4: Execution time for modal training. 

 

On figure 4. Both during training and during testing, the 

execution time is assessed. Because the testing data set's 

dimension is smaller, testing takes less time. 

 

On figure 5. The accuracy scores of the classifiers we 

trained our model on are displayed together with the 

classification report of the classifier with the highest 

accuracy score. The classification report includes the 

precision score, the recall, the f1-score, and support. It also 

shows the macro and the weighted average of the accuracy 

[12]. 

The F1 score is a weighted harmonic mean of precision 

and recall, where the highest score is 1.0 and the poorest is 

0.0. Precision is the capacity of a classifier not to label an 

instance positive that is negative, and recall is the ability of 

a classifier to discover all positive occurrences [6]. The 

number of real instances of the class in the given dataset is 

known as support. 

 
Figure 5: Accuracy scores and classification report. 

 

 

 
Figure 6: ROC and AUC 

 

The figure 6 above shows ROC (Receiver Operating 

Characteristics) and AUC (Area under the Curve). AUC is a 

measure of degree of separateness, whereas ROC is a 

probability curve. It reveals how well the model can 

differentiate across classes. The AUC measures how well a 

model predicts 0 classes as 0 and 1 classes as 1. [14]. 

 

 
Figure 7: Confusion matrix 

 

An algorithm's performance may be shown using a 

special table structure called a confusion matrix, often 

referred to as an error matrix, in the subject of machine 

learning, specifically the problem statistical classification 

[14]. 



Mkandiwire and Zimba/ Zambia (ICT) Journal, Volume 7 (Issue 1) © (2023 
 

Zambia (ICT) Journal, Volume 7 (Issue 1)  © (2023)  56 
 

 

V. CONCLUSION 

This study proposes a robust system for detecting 

ransomware in Windows executable files using supervised 

machine learning. The results show that supervised learning 

combined with dynamic malware analysis may successfully 

identify ransomware at the host level. Our model's 

efficiency and reliability were enhanced by first reducing 

dimensionality and testing multiple classification algorithms 

to determine which algorithm yields the highest accuracy 

and precision. 

The operations and generated artifacts exhibited in 

dynamic malware analysis accurately model real-life 

environments. The presence of such API statistics and 

registry key operations are high indicators of ransomware 

compromise. With a false positive rate of 1.1% and false 

negative rate of 4.1 the proposed framework is candidate for 

real-time implementation. 

The benefit of our suggested detection methodology is 

that it makes use of sandboxing technology, which insulates 

the victim device and has broad applications in systems 

running Microsoft Windows operating systems like 

Windows Server and Windows 7/8/10. 

VI. LIMITATION AND RECOMMENDATION 

The scarcity of an updated open-source dataset that 

captures ransomware behavior on a Microsoft Windows 

system was the greatest challenge encountered. The scope of 

input files needs to be expanded such that more file 

extensions such as zip, iso, bat etc. can be analyzed as well. 

Additionally, portability (across different operating systems) 

and multiclass detection is an area to be explored, the 

current framework can only detect ransomware and benign 

software, future works can be extended to implement 

multiclass classification to detect if a file is ransomware, 

benign or virus.  

REFERENCES 

 

[1] Alazab, Mamoun et al. (2010) ‘Zero-day malware 
detection based on supervised learning algorithms of 
API call signatures’. 

[2] Canfora, G. et al. (2014) ‘Metamorphic malware 
detection using code metrics’, Information Security 
Journal: A Global Perspective, 23(3), pp. 57–67. 

[3] Cho, J.H. and Kurup, P.U. (2011) ‘Decision tree 
approach for classification and dimensionality reduction 
of electronic nose data’, Sensors and Actuators B: 
Chemical, 160(1), pp. 542–548. 
doi:10.1016/j.snb.2011.08.027. 

[4] Casen, M., Li, F. and Williams, D. (2021) ‘Friend or 
Foe: An Investigation into Recipient Identification of 
SMS-Based Phishing’, in Furnell, S. and Clarke, N. 
(eds) Human Aspects of Information Security and 
Assurance. Cham: Springer International Publishing 
(IFIP Advances in Information and Communication 
Technology), pp. 148–163. doi:10.1007/978-3-030-
81111-2_13. 

[5] Cuckoo Sandbox-https://cuckoosandbox.org/. 

[6] Daka, E. and Fraser, G. (2014) ‘A survey on unit testing 
practices and problems’, in 2014 IEEE 25th 

International Symposium on Software Reliability 
Engineering. IEEE, pp. 201–211. 

[7] Ebner, J. (2021) ‘Supervised vs Unsupervised Learning, 
Explained’, R-Craft, 12 April. Available at: https://r-
craft.org/r-news/supervised-vs-unsupervised-learning-
explained/ (Accessed: 29 October 2022). 

[8] Honda et al. (2016) ‘${$UNVEIL$}$: A large-scale, 
automated approach to detecting ransomware’, in 25th 
${$USENIX$}$ Security Symposium (${$USENIX$}$ 
Security 16), pp. 757–772. 

[9] Hampton, N. and Baig, Z.A. (2015) ‘Ransomware: 
Emergence of the cyber-extortion menace’. 

[10] Kharaz, A. et al. (2016) ‘${$UNVEIL$}$: A large-
scale, automated approach to detecting ransomware’, in 
25th ${$USENIX$}$ Security Symposium 
(${$USENIX$}$ Security 16), pp. 757–772. 

[11] Kim, C.W. (2018) ‘Ntmaldetect: A machine learning 
approach to malware detection using native api system 
calls’, arXiv preprint arXiv:1802.05412 [Preprint]. 

[12] Luque, A. et al. (2019) ‘The impact of class imbalance 
in classification performance metrics based on the 
binary confusion matrix’, Pattern Recognition, 91, pp. 
216–231. 

[13] M. Neugschwandtner, C. Platzer, P. M. Comparetti, and 
U. Bayer, “Danubis–dynamic device driver analysis 
based on virtual machine introspection,” in 
International Conference on Detection of Intrusions and 
Malware, and Vulnerability Assessment. Springer, 
2010, pp. 41– 60. 

[14] Narkhede, S. (2021) Understanding AUC - ROC Curve, 
Medium. Available at: 
https://towardsdatascience.com/understanding-auc-roc-
curve-68b2303cc9c5 (Accessed: 4 June 2022). 

[15] Sgandurra, D. et al. (2016) ‘Automated Dynamic 
Analysis of Ransomware: Benefits, Limitations and use 
for Detection’, arXiv preprint arXiv:1609.03020 
[Preprint]. 

[16] Sophos (2021) ‘State of ransomware’. Available at: 
https://secure2.sophos.com/en-
us/medialibrary/pdfs/whitepaper/sophos-state-of-
ransomware-2021-wp.pdf. 

[17] Takanari Shigeta et al. (2016) ‘Encryption Processing 
of Ransomware’. 

[18] Takeuchi, Y., Sakai, K. and Fukumoto, S. (2018) 
‘Detecting ransomware using support vector machines’, 
in Proceedings of the 47th International Conference on 
Parallel Processing Companion, pp. 1–6. 

[19] You, I. and Yim, K. (2010) ‘Malware obfuscation 
techniques: A brief survey’, in 2010 International 
conference on broadband, wireless computing, 
communication and applications. IEEE, pp. 297–300. 

[20] Zimba, A. and Chishimba, M. (2019) ‘Understanding 
the evolution of ransomware: paradigm shifts in attack 
structures’, International Journal of computer network 
and information security, 11(1), p. 26.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


