
Paper—Evolution of PHP Applications: A Systematic Literature Review

Evolution of PHP Applications:
A Systematic Literature Review

https://doi.org/10.3991/ijes.v5i1.6437

Douglas Kunda
Mulungushi University, Kabwe, Zambia

dkunda@mu.ac.zm

Alinaswe Siame,
Mulungushi University, Kabwe, Zambia

alinaswe7@gmail.com

Abstract—This paper reviews, some of the research work done in the evo-
lution of PHP applications that have been around and are vastly used. PHP is
currently one of the most popular programming languages, widely used in both
the open source community and in industry to build large web-focused applica-
tions and application frameworks. This review looks at how PHP applications
have evolved in terms of the use of libraries, the software maturity, adoption of
object-orientation paradigm, the evolution of complexity and security. The re-
sults suggest that these systems undergo systematic maintenance and evolution
is helping the underlying programming language to grow.

Keywords—software evolution; web applications; object-orientated program-
ing; software libraries; PHP; scripting language

1 Introduction

PHP is currently one of the most popular programming languages, widely used in
both the open source community and in industry to build large web-focused applica-
tions and application frameworks. [1]

Eshkevar, Dos Santos, Cordy, & Antoniol also add that PHP is by far the most
popular WEB scripting language, accounting for more than 80% of existing websites.
However, Scripting languages such as PHP have been criticized as inadequate for
supporting maintenance of largescale software projects. [2]

Kyriakakis & Chatzigeorgiou attempt to provide insight into the way that PHP ap-
plications evolved over time. They examined several aspects of their history including
the amount of unused code, the removal of functions, the use of libraries, the stability
of their interfaces, the migration to object-orientation and the evolution of complexi-
ty. This evolution is brought about because a web application (Build in PHP) evolve,
new versions of programs, interactions and functionalities are added and existing ones
are removed or modified. Web applications require configuration and programming
attention to assure security, confidentiality, and trustiness of the published infor-

28 http://www.i-jes.org

Paper—Evolution of PHP Applications: A Systematic Literature Review

mation. During evolution of Web software, from one version to the next one, security
flaws may be introduced, corrected, or ignored. [3] This paper also takes into consid-
eration that PHP is dynamically typed, which means that variables take on the type of
the objects that they are assigned, and may change type as execution proceeds. While
some type changes are likely not harmful, others involving function calls and global
variables may be more difficult to understand and the source of many bugs. Hack, a
new PHP variant endorsed by Facebook, attempts to address this problem by adding
static typing to PHP variables, which limits them to a single consistent type through-
out execution. [4]

2 Software Evolution

Software evolution deals with the process by which programs are modified and
adapted to their changing environment. The aim of Lehman’s research was to formu-
late a scientific theory of software evolution. As any sound theory, it was meant to be
based on empirical results and aimed at finding invariant properties to be observed on
entire classes of software development projects. [5]

Software evolution is also a crucial ingredient of so-called agile software develop-
ment processes, of which extreme programming (XP) is probably the most famous
proponent. In brief, agile software development is a lightweight iterative and incre-
mental (evolutionary) approach to software development that is performed in a highly
collaborative manner and explicitly accommodates the changing needs of its stake-
holders, even late in the development cycle, because this offers a considerable com-
petitive advantage for the customer. In many ways, agile methods constitute a return
to iterative and incremental development as practiced early in the history of software
development, before the widespread use of the waterfall model. [6]

Mens & Demeyer go on to say, today software evolution has become a very active
and well-respected field of research in software engineering, and the terms software
evolution and software maintenance are often used as synonyms. For example, the
international ISO/IEC 14764 standard for software maintenance, acknowledges the
importance of pre-delivery aspects of maintenance such as planning.

2.1 Difficulties in Software Evolution

According to Mens & Demeyer the main difficulties of software evolution is that
all artefacts produced and used during the entire software life-cycle are subject to
changes, ranging from early requirements over analysis and design documents, to
source code and executable code. This fact automatically spawns many sub disci-
plines in the research domain of software evolution, some of which are listed below:

Requirements evolution. The main objectives of requirements engineering are de-
fining the purpose of a software system that needs to be implemented. Requirements
evolve because requirements engineers and users cannot predict all possible uses of a
system, because not all needs and (often mutually conflicting) goals of the various

iJES ‒ Vol. 5, No. 1, 2017 29

Paper—Evolution of PHP Applications: A Systematic Literature Review

stakeholders can be taken into account, and because the environment in which the
software is deployed frequently changes as well.

Architecture evolution. Based on an (initial) description of the software require-
ments, the overall software architecture (or high-level design) and the corresponding
(low-level) technical design of the system can be specified. These are inevitably sub-
ject to evolution as well.

Data evolution. In information systems and other data-intensive software systems
it is essential to have a clear and precise description of the database schema.

Runtime evolution. Many commercial software systems that are deployed by
large companies need to be constantly available. Halting the software system to make
changes cannot be afforded. Therefore, techniques are needed to change the software
while it keeps on running. This very challenging problem is known under a variety of
terms, including runtime evolution, runtime reconfiguration, dynamic adaptation and
dynamic upgrading.

Service-oriented architectures (SOA) provide a new paradigm in which a user ori-
ented approach to software is taken. The software is developed in terms of which
services are needed by particular users, and these users should be able to easily add,
remove or adapt services to their needs. While this approach has many similarities
with the component-oriented approach, services are only bound together at runtime,
whereas components are statically (i.e., at design time) composed together. A service-
oriented approach thus promises to be inherently more flexible than what is available
today. This is crucial, especially in e-commerce applications, where rapid and fre-
quent change is a necessity in order to respond to, and survive in, a highly competi-
tive market.

Language evolution. When looking at languages (whether it be programming,
modelling of formal specification languages), a number of research directions come to
mind. The first one is the issue of co-evolution between software and the language
that is used to represent it. Both are subject to evolution, albeit at different speed. The
second challenge is to provide more and better support for evolution in the context of
multi-language software systems. A third challenge is to improve the design of lan-
guages to make them more robust to evolution (e.g., traits). This challenge has always
been the main driver of research in design of new computer languages. Unfortunately,
every new programming paradigm promises to improve the software development
process but introduces its own maintenance problems. This was the case for object-
oriented programming (where the inheritance hierarchy needs to be mastered and kept
under control when evolving software), aspect-oriented programming (where aspects
need to be evolved next to the base code, component oriented programming, and so
on. In general, every new language or technology should always be evaluated in the
light of its potential impact on the software’s ability to evolve [6].

2.2 PHP Applications

The major reason in selecting acknowledged projects with a long history, large
number of committers and even larger number of users. According to Samoladas,
Angelis, & Stamelos the majority of open-source projects are abandoned after a short

30 http://www.i-jes.org

Paper—Evolution of PHP Applications: A Systematic Literature Review

time period, rendering them inappropriate for systematic analysis of programming
and maintenance habits.

The case study has been conducted by Kyriakakis & Chatzigeorgiou on the follow-
ing five open source projects implemented in PHP:

Wordpress: The most popular blogging software; it has a vast community of both
contributors and active users.

Drupal. One of the most advanced CMS (Content Management System). It is also
characterized by a large and active community.

PhpBB: One of the most widely used forum software.
MantisBt: Probably the most popular bug tracking application written in PHP.
PhpMyAdmin: The well-known MySQL administration tool.
In Figure 1 Kyriakakis & Chatzigeorgiou show some statistics about the selected

projects. Cumulatively, we have studied 390 official releases aggregating to 50 years
of software evolution.

Fig. 1. Release Statistic for the Examined Projects

Letarte, Gauthier, & Merlo extracted the security model is from PHP source code
using a reengineering approach. First a PHP parser is used to extract an intra-
procedural control flow graph (CFG) for all the functions of the system. Inter-
procedural CFG information is also extracted to represent the conservative calling
relationship between functions of the whole system.

The above are the majorly reviewed approaches that how given information this
review, which has organized the various aspects of evolution of PHP applications.

3 Software Maturity

In scripting languages a major source of unused code is the employment of third
party libraries, which at the same time is an accepted good practice in software devel-
opment and a possible indication of maturity [2]. In this context, Kyriakakis &
Chatzigeorgiou investigated the amount of library code being used over time in each
system. Another factor implying software maturity is the stability of the correspond-
ing APIs, and therefore, six classes of possible API changes were examined.

iJES ‒ Vol. 5, No. 1, 2017 31

Paper—Evolution of PHP Applications: A Systematic Literature Review

3.1 Library usage

PHP is a rather new programming language and according to Kyriakakis &
Chatzigeorgiou has gained popularity during the last decade. An indirect indication of
maturity for a given programming language is the development of third party libraries
and the employment of them in other projects. In three out of the five projects in our
study we have observed a strong trend in using such libraries. As Tulach observes, the
trend in modern software development is the use of such pre-made building blocks in
order to ease and speed up the development of applications. As we have shown, a side
effect is the introduction of unused code blocks, due to the scripting nature of the
language. However, the fact that the library's source code becomes part of the sys-
tem's source code, enables us to measure the ratio of library code over system code,
something that is not straightforward with compiled languages.

3.2 Interface stability

The stability of an interface can be characterized by the number and types of
changes to the functions' signatures. According to the strict PHP definition, a function
signature is only the name of the function, but this does not reflect the interface cor-
rectly, since no parameters are included. To track interface changes in more detail,
Kyriakakis & Chatzigeorgiou have also considered the mandatory and optional func-
tion parameters as well as the default values of the optional parameters. They classi-
fied the possible changes to six categories as shown in Figure 2. For each version of
the examined systems they have computed the ratio of changes over the total number
of signatures, differentiating between the six cases shown in Figure 1. Next, they
computed the mean of all versions for each project and the results are summarized in
Figure 3. The values for cases C1 to C5 are extremely low, considering the almost ten
years of evolution for each project. This fact implies that development teams have
paid attention in order not to break backward compatibility and that the corresponding
APIs are mature. Changes of the 6th type exhibit a mean ranging from 3.75% for
phpMyAdmin, to 14.22% for phpBB, providing further support to the aforementioned
claim, since despite the implementation changes for a number of functions, the corre-
sponding signatures remained stable.

32 http://www.i-jes.org

Paper—Evolution of PHP Applications: A Systematic Literature Review

Fig. 2. Change cases of function signatures

Fig. 3. Ratio of changes in function signatures

iJES ‒ Vol. 5, No. 1, 2017 33

Paper—Evolution of PHP Applications: A Systematic Literature Review

4 Software Quality

There are many different definitions of quality. For some it is the "capability of a
software product to conform to requirements." [7] . The first definition of quality
History remembers is from Shewhart in the beginning of 20th century: There are two
common aspects of quality: one of them has to do with the consideration of the quali-
ty of a thing as an objective reality independent of the existence of man. The other has
to do with what we think, feel or sense as a result of the objective reality. In other
words, there is a subjective side of quality. According to Juran the word quality has
multiple meanings. Two of these meanings dominate the use of the word: 1. Quality
consists of those product features which meet the need of customers and thereby pro-
vide product satisfaction. 2. Quality consists of freedom from deficiencies. Neverthe-
less, in a handbook such as this it is convenient to standardize on a short definition of
the word quality as "fitness for use".

Following the definition of quality consists of freedom from deficiencies,
Kyriakakis & Chatzigeorgiou complement the study with a rather traditional measure,
they computed McCabe's cyclomatic complexity (CCN), thereby investigating if PHP
practitioners implement comprehensible and thus maintainable code. They calculated
CCN per function and then obtained the average CCN of all functions for each ver-
sion. To make results more readable they categorized the functions according to their
CCN in three ranges. A value of 10 is usually considered as a critical threshold [8],
[9]. To enable a more fine-grained classification and to comply with critical levels
identified by various quality assessment tools, they considered a second threshold at
the value of 5. As a result, values in the range [0...5) imply excellent readability, [5-
10) medium complexity but still readable code and values higher than 10, code that
should be examined closely. Next, we calculated the percentage of functions belong-
ing to each range. The percentages over time are almost constant for all five projects
as shown in Figure 4.

5 Adoption of Object orientated Programming (OOP)

Nowadays there is no exact definition of the object-oriented programming (OOP)
or the object- oriented programming language. In literature, various authors give a
different explanation of these terms. Based on these definitions (Berdonosov,
Zhivotova, & Sycheva, 2015), they define the object-oriented programming language
as a programming language, basic elements are objects that have their own attributes
and methods, and forming a hierarchically organized classes of objects.
!""#$%&'()*#)*+&,)%-.&'&*&#'/)

Object is a model (abstraction) of a real essence in a programming system.
Class is an abstract declaration of attributes and methods for a group of similar ob-

jects which called instances of class.
Attribute is a parameter declared in a class which characterizes the object (class

instance).

34 http://www.i-jes.org

Paper—Evolution of PHP Applications: A Systematic Literature Review

Fig. 4. Evolution of functions in three complexity ranges over time

Method is declared in a class procedure which defines behavior of class instances.
In general, the object-oriented approach to development of programs based on four

main mechanisms: abstraction, encapsulation, polymorphism and inheritance.
Abstraction is the process of identifying of the essential characteristics of an ob-

ject that distinguish it from all other kinds of objects and thus providing crisply de-
fined conceptual boundaries, from the viewpoint of the observer.

Encapsulation is the process of compartmentalizing the elements of an abstraction
that constitute its structure and behavior.

Polymorphism is the ability of being able to assign a different meaning or usage
to something in different contexts and the property of an object respond to a query
according to its type.

Inheritance is a mechanism to declare new data types on the basis of existing
types in such way that the attributes and methods of the base types become the mem-
bers of the subtype. [10]

Object orientation in PHP was fully supported in version 5.3, but it was partially
supported and used few years before that, staring in early 4.x versions. So there was a
period where procedural systems could migrate code to classes [2].

In Figure 5 Kyriakakis & Chatzigeorgiou present the ratio of the number of meth-
ods over the total number of functions and class methods of the system code, exclud-
ing third party libraries to show the trend of converting the core codebase of the sys-
tems to classes. They observe that Drupal after a long period of denial to the object
oriented paradigm, even eliminating the small fraction of classes that existed in the
early versions, made a turn in version 7.0 with the introduction of classes. The project

iJES ‒ Vol. 5, No. 1, 2017 35

Paper—Evolution of PHP Applications: A Systematic Literature Review

with the major change to its coding paradigm is phpBB, where in version 3.0.0 that
was a milestone in the project's history, it massively adopted object orientation.
WordPress keeps it's slow but steady trend to object orientation, but the huge user
contributed code in plug-ins and themes keeps the development team from making
major rewrites to the public API of the application. Instead, the developers gradually
perform refactoring applications to the internals of the system without breaking
backward compatibility. On the other hand, phpMyAdmin that is a widely used pro-
ject, found in almost any Linux powered web server, has a powerful momentum to-
wards being a fully object oriented system. This is due to the minimal number of user
plug-ins or themes, entailing no threat for breaking the public API of the application.

They concluded that migrating applications from procedural to the object oriented
paradigm is not only a matter of developers' will or implementation language, but if
the project can afford the cost of breaking backward compatibility imposing signifi-
cant issues to their clients.

Fig. 5. Methods ratio over total number of functions and methods

6 Security

Web applications require configuration and programming attention to assure secu-
rity, confidentiality, and trust of the published information. During evolution of Web
software, from one version to the next one, security properties may change and possi-
ble changes may include new flaws or corrections. Changes to security properties,
including access control privileges, can be monitored by observing and analyzing
changes between security models extracted from different versions of an application
[11].

Property Satisfaction Profiles (PSP), derived from formal security models de-
scribed by [12], are presented. They are used to investigate the evolution of the secu-

36 http://www.i-jes.org

Paper—Evolution of PHP Applications: A Systematic Literature Review

rity models extracted from several versions of a Web application. The motivation
comes from the need for observing and comparing security models along the evolu-
tion of Web applications. In previous research work by [3], the authors have investi-
gated the evolution of security flaws in Web applications using flow analysis based
vulnerability detection [13].

The proposed PSP have been used to monitor security model evolution across sev-
eral versions of a small PHP open source system, phpBB that implements a bulletin
board. Model evolution analysis allows to identify changes in security levels between
consecutive versions and may help developers to focus their validation effort on
changes at security sensitive statements. Extraction and validation show a linear
memory and execution time complexity and are reasonably fast in practice. Required
execution time for parsing, extraction of security models and PSP computation take
around 44 s. for each individual version and 1349 s. for the 31 versions. Evolution
analysis takes 20 s. for all the versions of phpBB. Future research may follow the
perspectives of extending experiments to larger and more diversified systems to better
assess performance. Also, extensions to the presented approach should be conceived
to address more complex security models [11].

6.1 Summary of issues discussed

The overview of the reviewed Topic with the unit of analysis and the conclusions
derived based on the findings for each project is provided in Table YES implies that
the derived conclusion can be considered as validated for the corresponding project,
while a NO implies that the conclusion is not validated.

Table 1. Overview of reviewed Applications

Topic Conclusions Wordpress phpBB Drupal MantisBt PhpMyAdmin Reference
Software Maturity
(Library usage)

Projects reuse
code incorporat-
ing third party
libraries

YES YES NO YES YES [2]

Software Maturity
(Interface stabil-
ity)

Function inter-
face remains
stable

YES YES YES YES YES [2]

Software quality Complexity
remains stable YES YES YES YES YES [2]

Adoption of
Object orientated
Programming
(OOP)

Projects gradu-
ally migrate to
OOP YES YES YES YES YES [2]

Security Vulnerability
resolution in e.g.
SQL injection,
Cross-site
scripting, Au-
tomatic registra-
tions

YES [14] YES
[15]

YES
[16] No No

iJES ‒ Vol. 5, No. 1, 2017 37

Paper—Evolution of PHP Applications: A Systematic Literature Review

7 Conclusion

The various aspects of the reviews done in this paper are showing how PHP has
evolved from a simple web scripting language to a large scale web application and
standalone application programming language. The steady fashion in which the sam-
pled PHP applications presented in this review have matured, through the use of third
party libraries, having dynamic features presented by Hills & Klint, are an indication
PHP has the potential to become one of the biggest programming languages, aside it
already dominating the web with over 80% of web applications being powered by
PHP [4].

Security being a very crucial part of many web applications, PHP was one of the
most vulnarable to attacks such as SQL injection and Cross-site scripting. The
adoption of OOP has helped in making PHP applications more secure and easier to
maintain. This can be verified from the sampled large and widely used PHP
applications in this review. However, it is important to also note that the area of
security with regards to php application has had rapid improvement and patching as
can be confirmed by [17], With that being a very good indicator, more research has to
be done on more invovative security implementations. Further more, the area of PHP
Application aging is one other area of research that can give even more information
with regards to the evolution of PHP applications.

8 References

[1] M. Hills and P. Klint, "PHP AiR: Analyzing PHP Systems with Rascal," IEEE, pp. 454-
457, 2014.

[2] P. Kyriakakis and A. Chatzigeorgiou, "Maintenance Patterns of large-scale PHP Web Ap-
plications," IEEE International Conference on Software Maintenance and Evolution, pp.
381-390, 2014.

[3] E. Merlo, D. Letarte and G. Antoniol, "SQL-Injection Security Evolution Analysis in
PHP," IEEE, pp. 45-49, 2007. https://doi.org/10.1109/wse.2007.4380243

[4] L. Eshkevar, F. Dos Santos, J. R. Cordy and G. Antoniol, "Are PHP Applications Ready
for Hack?," IEEE, pp. 63-72, 2015. https://doi.org/10.1109/saner.2015.7081816

[5] I. HERRAIZ, D. RODRIGUEZ, G. ROBLES and J. M. GONZALEZ-BARAHONA, "The
Evolution of the Laws of Software Evolution: A Discussion Based on a Systematic Litera-
ture Review," ACM, pp. 28:1-28:28, 2013.

[6] T. Mens and S. Demeyer, Software Evolution, Berlin: Springer, 2007.
[7] "ISO/IEC 9001: Quality management systems -- Requirements," International Organiza-

tion for Standardization, 1999.
[8] S. Bergmann and S. Priebsch, Real-World Solutions for Developing High-Quality PHP

Frameworks and Applications, Wiley, 2011.
[9] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,

PWS Publishing Company, 1997.
[10] V. Berdonosov, A. Zhivotova and T. Sycheva, "TRIZ evolution of the Object-Oriented

Programming Languages," Electronic Notes in Theoretical Computer Science 314, p. 23–
44, 2015.

38 http://www.i-jes.org

Paper—Evolution of PHP Applications: A Systematic Literature Review

[11] D. Letarte, F. Gauthier and E. Merlo, "Security Model Evolution of PHP Web Applica-
tions," Fourth IEEE International Conference on Software Testing, Verification and Vali-
dation, pp. 290-298, 2011. https://doi.org/10.1109/ICST.2011.36

[12] D. Letarte and E. Merlo, "Extraction of inter-procedural simple role privilege models from
php code," IEEE Computer Society, p. 187–191, 2009. https://doi.org/10.1109/
wcre.2009.32

[13] "Insider and ousider threat-sensitive sql injection vulnerability," in WCRE ’06: Proceed-
ings of the 13th Working Conference on Reverse Engineering (WCRE 2006), Washington
D.C., 2006.

[14] S. Esser, "Interview with Stefan Esser," 8 November 2016. [Online]. Available:
http://blogsecurity.net/wordpress/interview-280607.

[15] Kellanved, "3.0.6 CAPTCHA plugins and you," 7 November 2016. [Online]. Available:
https://blog.phpbb.com/2009/06/27/3-0-6-captcha-plugins-and-you/.

[16] D. S. Team, "Security advisories," 8 November 2016. [Online]. Available:
https://www.drupal.org/SA-CORE-2014-005.

[17] J. Walden, M. Doyle, R. Lenhof and J. Murray, "Java vs. PHP: Security Implications of
Language Choice for Web Applications," in Engineering Secure Software and Systems,
Berlin , Springer Heidelberg, 2010, pp. 61-69.

[18] J. Tulach, "Practical API Design: Confessions of a Java Framework," Apress, 2008.
[19] Samoladas, L. Angelis and I. Stamelos, "Survival analysis on the duration of open source

projects," Inf. Softw. Technol., vol. 52, no. 9, p. 902–922, 2010. https://doi.org/10.1016/
j.infsof.2010.05.001

9 Authors

Douglas Kunda (PHD) is with Mulungushi University, School of Engineering
Science and technology, Kabwe, Zambia (dkunda@mu.ac.zm).

Alinaswe Siame is with Mulungushi University, School of Engineering Science
and technology, Kabwe, Zambia (alinaswe7@gmail.com).

Article submitted 24 November 2016. Published as resubmitted by the authors 06 January 2017.

iJES ‒ Vol. 5, No. 1, 2017 39

	iJES – Vol. 5, No. 1, 2017
	Evolution of PHP Applications: A Systematic Literature Review

